Received 14 December 2006

Accepted 15 December 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui Lu,^a Yun-Long Fu,^a Jun-Ying Yang^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

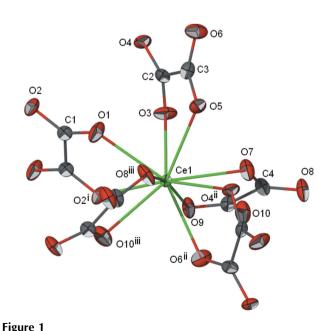
Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.026 wR factor = 0.083 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetrasodium(I) pentaoxalatodicerate(III) dihydrate


The Ce atom in the title compound, Na₄[Ce₂(C₂O₄)₅]·2H₂O, is chelated by five oxalate groups in a bicapped squareantiprismatic geometry; one oxalate ligand is located on a centre of inversion. All oxalate groups function in a μ_2 bridging mode, resulting in a three-dimensional network architecture.

Comment

The preceeding paper reports the structure of tetrasodium pentaoxalatodilanthanate dihydrate (Lu *et al.*, 2007). The cerium analog is isostructural, the compound crystallizing with similar unit-cell dimensions. The Ce atom in $[(H_2O)_2Na_4]$ - $[(C_2O_4)_5Ce_2]$ has a bicapped square-antiprismatic geometry; water molecules in the three-dimensional polyanionic network interact through hydrogen bonds (Table 2). One oxalate ligand is located on a centre of inversion.

Experimental

A mixture of cerium(III) nitrate x-hydrate (0.217 g, 0.5 mmol), oxalic acid dihydrate ((0.252 g, 2 mmol), nicotinic acid (0.123 g, 1 mmol), sodium hydroxide (0.200 g, 5 mmol) and water (10 ml) was placed in a 15-ml Teflon-lined stainless-steel Parr bomb. The bomb was heated at 433 K for 72 h. Colourless crystals were isolated from the cool solution in about 50% yield.

© 2007 International Union of Crystallography All rights reserved

Fig. 1. Displacement ellipsoid plot of the polyanion of $[(H_2O)_2Na_4]^{4+}$ $[(C_2O_4)_5Ce_2]^{4-}$ at the 50% probability level; the sodium cations and water molecule are not shown. Symmetry codes are given in Table 1.

metal-organic papers

Crystal data

$Na_4[Ce_2(C_2O_4)_5]\cdot 2H_2O$
$M_r = 848.33$
Monoclinic, $P2_1/n$
a = 7.8378 (6) Å
b = 11.647 (1) Å
c = 11.938 (1) Å
$\beta = 101.030 (1)^{\circ}$
$V = 1069.7 (2) \text{ Å}^3$

Data collection

Bruker APEX area-detector	6885 measured reflections
diffractometer	2369 independent reflections
φ and ω scans	2131 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.030$
(SADABS; Sheldrick, 1996)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.578, T_{\max} = 0.810$	

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.026$	$w = 1/[\sigma^2(F_0^2) + (0.05P)^2]$
$wR(F^2) = 0.083$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
2369 reflections	$\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-3}$
180 parameters	$\Delta \rho_{\rm min} = -0.71 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 2

 $D_x = 2.634 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 4.39 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless

 $0.14 \times 0.06 \times 0.05 \text{ mm}$

Table 1

Selected bond lengths (Å).

Ce1-O1	2.537 (3)	Ce1-O6 ⁱⁱ	2.532 (3)
Ce1-O2 ⁱ	2.560 (3)	Ce1-O7	2.535 (3)
Ce1-O3	2.526 (3)	Ce1-O8 ⁱⁱⁱ	2.548 (3)
Ce1-O4 ⁱⁱ	2.688 (3)	Ce1-O9	2.649 (3)
Ce1-O5	2.596 (3)	Ce1-O10 ⁱⁱⁱ	2.677 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1w−H1···O3 ^{iv}	0.85 (1)	2.02 (2)	2.848 (5)	166 (8)
$O1w - H2 \cdots O6^{v}$	0.85(1)	1.99 (3)	2.813 (5)	161 (8)

The water H atoms were located in a difference Fourier map and were refined with distance restraints of O–H 0.85 (1) and H···H 1.39 (1) Å. Their displacement parameters were freely refined.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2006).

We thank the Natural Scientific Foundation Committee of Shanxi Province (No. 20041031) and the University of Malaya for generously supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2003). SAINT (Version 6.36A) and SMART (Version 6.36A). Bruker AXS Inc., Madison, Winsonsin, USA.

Lu, H., Fu, Y.-L., Yang, J.-Y. & Ng, S. W. (2007). Acta Cryst. E63, m316-m318.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Westrip, S. P. (2006). publCIF. In preparation.